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IDENTIFICATION OF FUZZY SETS WITH A CLASS OF CANONICALLY
INDUCED RANDOM SETS AND SOME APPLICATIONS

INTRODUCTION

It is becoming increasingly more apparent that fuzzy set techniques can play an important role in
formulating and solving military problems. For example, the recent paper of Watson et al. [1] makes
basic contributions to the use of imprecise information which can occur typically in the decision prob-
lems facing a naval task force commander. Other applications of fuzzy set techniques such as fuzzy
clustering [2,31 could well lead to more satisfactory target discrimination and correlation schemes than
classical approaches. Fuzzy logic [4] might also play an important role in efficiently combining large
quantities of military intelligence information which typically arise from disparate sources, and may in
part consist of redundancies and vague specifications. (Examples 2 and 4 of the "Applications" section
of this report illustrate this role of fuzzy logic.) On the other hand, procedures based on continually
refined classical set theory and probabilistic-statistical methods still form the overwhelming majority of
current technology used in a military context.

Since the inception of fuzzy set theory 15 years ago, a large number of papers have been produced
in both the theoretical and applied areas. (See the 566 listings in Ref. 5, the 238 entries in Ref. 6, and
a briefer listing by topics in Ref. 7.) However, little attention has been paid to determine what rigorous
connections exist between fuzzy set theory and classical probability theory. At the same time, support-
ers of each school have been engaged in controversy involving approaches to the modeling of uncer-
tainties. For example, see the comments of Stallings, a classical Bayesianist, vs Jain, a fuzzy set sup-
porter [8-10]; Tribus, a standard probability theory supporter, vs Kandel and Zadeh, fuzzy set backers
[5,11-131; Zadeh's criticism [141 of Dempster's and Shafer's upper and lower probabilistic approaches
[15-17] as well as his (Zadeh) development of possibility theory [18] as an alternative to classical proba-
bility theory. See also the introductory comments of Sugeno [19], stating unequivocally the impossibil-
ity of comparing fuzzy sets with probabilities.

These lively and extremely interesting discussions only serve to point up the need to answer the
basic question:

What is the relationship between fuzzy set theory and classical probability theory?

This report demonstrates that indeed there is a direct connection between fuzzy set theory and
random set theory, and that the fuzzy set approach to modeling of reality can be interpreted in
equivalent probabilistic terms. On the other hand, this does not negate the various innovative fuzzy set
techniques developed in the field, such as Sanchez' investigations and applications of solutions of rela-
tional equations to medical diagnoses [20] or the fuzzy reasoning approach to linguistically describable
situations [4,13,18,21-23]. It appears that many problems are much better modeled initially in a fuzzy
set context and then later, when so desired, described also in a probabilistic setting.

It is expected that the new relationships developed in this report will only serve to emphasize the
mutual supportive roles probability theory and fuzzy set theory can play with respect to each other in
future work.

Manuscript submitted April 8, 1980.
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1. R. GOODMAN

The basic problem can be stated as follows:

If S is any random subset of a space X, then clearly S determines a naturally corresponding fuzzy
subset A(S) of X which is equivalent to S under all one point coverages, i.e.,

OA(S) (X) I Pr (x E S), (1.1)

for all x E X.

However, the converse of this situation is not all obvious: If A is any given fuzzy subset of X,
does there exist a random set S(A), which is equivalent to A under one point coverages, i.e.,

Pr (x E S(A)) - OA(X) , (1.2)

for all x E X?

THE BASIC CANONICAL MAPPING

The following definitions and notations are assumed throughout:

X is an arbitrary fixed space, F is the collection of all fuzzy subsets A of X, each A having typical
membership function OA: X - [0,11, and R is the collection of all random subsets S of X. Denote the
collection of all ordinary subsets of X by P (X).

For any fuzzy subset A of X, define the multi-valued mapping

rA: 10,11 - P(X), (2.1)

where, for any x E [0, 11

rA (x) - A-'([x,1J) . (2.2)

If U is any random variable uniformly distributed over [0,11-corresponding to unit interval pro-
bability space

If ([0,11, B1, voll) (2.2')

where B. is the a,-ring of all Borel, or more generally, Lebesgue measurable subsets of [0,1] and vol I is
Lebesgue measure-then define the mapping

SU: F-R , (2.3)
where, for any A E F,

Su (A) df rA(U)-L = IU.1]) . (2.4)

Also, define

rng(rA) df trA (X) I X E [0,111 , (2.5)

rA (BI) - (rA(B)IB E B1 )J {IrA(x)IxE B)IBE B1I, (2.6)

and for any A E rA(Bl) , i.e., A = rA (B), for some B E B,

PrA(A) = vol1 (r-I (A)) . (2.7)

2
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Theorem 1

For any fuzzy subset A of X with rng (OA) E B1 :

1. TA is a measurable mapping from probability space Ito probability space

SA = (rng (-A), rA(B1), ArA) * (2.8)

SA can be considered to be the probability space corresponding to random set Su (A), since, for

all A E rA(Bl),

/lrA (A) - Pr (Su (A) E A) . (2.9)

2. A and Su (A) are equivalent with respect to all one point coverages:

For all x E X,

OA (x) -Pr (Su (A) E C1x1 ) - Pr (x E Su (A)), (2.10)

where

P.) {CIC E rng(FA) & x E c} = rA (10, OA(x)M) E rA(Bl) * (2.11)

Proof 1:

Let A -rA(B) E FA(Bd? be arbitrary, for some B E B1 (not a unique representation, in general).
For any y E [0, 11, define Iy - (xix E [0,11 & 4-1 ([x,11) = O-1 ([y,11))

Note, for x • y, O- ([x,11) - O,1 ([y,1]) implies 40j ([min (x, y), max (x, y))) = 0. Then

A -I (A) - U I( - ( U I U (B-I J)) , (2.7')
AyEB yEBnlJ(A)

where

J(A) - {yly E [0,11 & Iy is a left half closed nondegenerate interval containing y}

[0,1] I J(A) - lyIy E [0,11 & Iy - {y)) - (yIy E 10, 1I & for any

E > 0, there exist xI, x2 E rng (40A) such that x< < y < x2 & 1x2 - xI1 < E).

Since rng (OA) E B1, then J(A) E B1, and thus B -H J(A) E B1 . In addition, U IY is actually
yEBntJ(A)

a disjoint, and hence at most countably infinite, union (since the IY s are intervals) U IY E B1,
yEK(A,B) B,

where K(A,B) 5 BfnJ(A).

Thus, Eq. (2.7') becomes

F -I(A) - U I U (B - J(A) E B1 (2.7")A yEK(A,B)

Next, consider rA(B,). If B,, B2 , .. , E B., clearly, U rA(Bj) = rA(U B) E rA (B.)

3



1. R. GOODMAN

However, for intersections

n rA(B1) = rA (rKI(n rA(B1))) = rA(n rA' (rA(Bj)))E rA(BI)j-1 ~ ~ ~ Aj-1 j-1

since Eq. (2.7") implies each r- I (rA(Bj)) E B,, and hence n rA (rA(BI)) E B,

Similarly, for any B E B,

rng(rA) -1 rA(B) = rA (r -j(rng(rA) - rA(B))) = rA ( 10,1] -r-' (rA(M)))

with Eq. (2.7") implying rng (rA) -i rA-'(rA(B)) E B, , and hence rng (rA) - rA(B) E rA(B,).

Thus, rA (B,) is a (r-ring, and therefore Eq. (2.7") implies rA is measurable. The induced meas-
ure is from Eqs. (2.7") and (2.7),

ArA(A) = , vol1 (I,) + vol,(B - J(A)), (2.7"')
yE K(A,B)

where vol (I) = sup(Iy) - inf (Iy) , for all y.

Proof 2:

Follows immediately from Eq. (2.4).

0

From now on, the condition rng (OA) E B, will be assumed, where required.

Theorem 2

Any fuzzy subset A of space X can be uniformly approximated arbitrarily close w.r.t. one point
coverages by a random set which has a finite number of possible set values:

For any integer n > 2, let U,, be a r.v. uniformly distributed over the discrete set

Dn f {ii/(n- 1) i - 0,1,.., n- 1) , (2.12)

and define, analogous to the continuous case,

uS (A) Sf OAV ([Un,1]), (2.13)
U,,;,

Then,

s IPr (x E S (A)) - OA(X)l < 1/n * (2.14)

Proof:

Partition X into disjoint sets of the form OA-' ([i/(n - 1), (i + 1)/(n - 1)) and consider the
maximum of suprema over those sets.

0
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c::

Remarks

Let A be any fuzzy subset of X:

Dempster's lower and upper probability measures [14-17,241 induced on P (X) by the multi- :
valued mapping rA, become here

Pi;(C) - Pr(0 #f Su (A) C C)/Pr (0 ;d Su (A)), (2.15)

Pr*(C) - Pr (0 • Su (A) n C)/Pr (0 # Su (A)), (2.16)

for any C E P (X).

Assuming now for simplicity that there is at least one x E X such that A (x)-1, Eqs. (2.15) and
(2.16) simplify accordingly. Then for any random subset S of X which is equivalent to A w.r.t. one
point coverages, for all C E P (X):

Pr (0 ;d Cn S)> sup Pr(xE S) -su Pr (x E Su (A))

df'
-SUE MA (X) - Poss (fuzzy variable A is 'in' C) - Pr* (C)

-Pr (0 •f C n Su (A)), (2.17)

and

Pr(C 5 S) < inf Pr (x E S) - inf Pr(xE Su (A))

- inf OA(x) - Cert (fuzzy variable A is 'in' C) - Pr* (C)
xEC

- Pr(C £ Su (A)) . (2.18)

Thus, Su achieves, among all possible maps from F to R which preserve one point coverages,
dually (1), a maximum lower probability Dempster measure, i.e., maximizes all (conjunctive) multiple
point coverages and (2), a minimum upper probability Dempster measure, Le.-, minimizes all disjunc-
tive multiple point coverages.

a

Theorem 3

The mapping Su between all fuzzy and random subsets of a space has isomorphic or isomorphic-
like properties with respect to a number of fuzzy set operations and corresponding ordinary random set
ones:

(i) For any A, B, fuzzy subsets of X

Su (AU B) = Su (A) U Su (B) (2.19)

Su (AnB) = Su (A) n Su (B) (2.20)

Su (X - A) = X e SI-u(A) (2.21)

Su (A - B) = (Sj-u (A) 5, Su (B)) (2.22)

(ii) For any fuzzy subset A of X, fuzzy subset B of Y, X, Y given spaces,

Su (A x B) = Su (A) x Su (B), (2.23)

5



1. R. GOODMAN

i.e., denoting proj I as the projection onto X-space, etc.,

projI (Su (A x B) - Su (A) , proj2 (SU (A x B)) - Su (B)

(iii) For any A, B, fuzzy subsets of X,

A C B iff (Su (A) C Su (B) , for all outcomes U E [0,1]) . (2.24)

into
(iv) Let A be a fuzzy subset of X and B a fuzzy subset of Z, and f: X Z , an ordinary func-

tion between X and Z, given spaces. Then:

Su (f(A)) - f(Su (A)) and Su (fQ- (B)) - f-' (Su (B)) * (2.25)

(v) For any fuzzy subset A of X x Y, X , Y given spaces, for all x E X, y E Y

Pr (x E proj I (Su (A))) > Pr (x E Su (proj I (A))) -
4 proj1 (A) (x) (2.26)

> OA (X, y) - Pr (x, y E Su (A))

Proofs and Remarks:

Recall [7,25,261, the basic fuzzy set operations

, AUB (X) i max (OA (X), B (X)) 

OAnB (X) - min (A (x), B (X)) 

X -IA(x) 1-OA (X)

DAXB (X, y) min (OA (x), 4I (y))

A C B iff A (X) < IB (X), for all x

Of (A) (Y) - SUP) O'A (X)
x f f- (y)

I IL 10 -SB (f(X)) 

OA*B (X) - O(X-A)UB (X) - max (1 - OA (x), OtB (X))

projI(C) (X) e SUE Xc (X, y)

where C is a fuzzy subset of X x Y , x E X.

The random set operations are standard, noting it is the same outcome of U that governs both
Su (A) and Su (B) in the R.H.S. of Eqs. (2.19), (2.20), (2.23), and (2.24). Note that r.v. U is replaced
in the R.H.S. of Eq. (2.21) by the identically distributed but distinct 1 - U. Similarly for the R.H.S. of
Eq. (2.22), where '=v>' is defined between any two ordinary sets S and T C X as
(X - S) U T. proj I as a random set operation in the R.H.S. of Eq. (2.26) is defined in the usual
manner:

x E proj, (S) iff (x, y) E S

for at least some y E Y, where S is any outcome of a random subset of X x Y; x E X.

All proofs then follow by straightforward use of the definitions.

0
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Additional Remarks

1. Let T be any random subset of space X and define fuzzy set A(T) as in Eq. (1.1). Then
although Su (A(T)) and T (and A(T)) are equivalent w.r.t. all one point coverages, in general the two
random sets are quite distinct. Note also that A(Su (A(T))) = A(T).

To illustrate how different Su (A(T)) and T may be, suppose T = [W - a/2 , W + a/21 is a ran-
dom interval of IR, where a > 0 is a constant and W is a random variable having p.d.f. h which is
everywhere positive and continuous over R. Then, for any two fixed points x, y E R with Ix - yj >a,

x+a2 y+a 2

0- Pr ({x,yl 5 T) < mm In h(t)dt , 1 h(t)dt
-a/ 2 y a/2 I

e min (Pr (x E T) , Pr (y E T)) = Pr (Qx,y) 5 Su (A)) . (2.27)

(See also Eq. (2.18).)

2. If A is an ordinary subset of X,

1 - Pr (Su (A) = 0-1(1) = A)

(The probability qualification is needed, since Pr (U = 0) = 0, but SA(0) = X.)

3. If X 5 R and OA is monotone increasing over X, then Su (A) = 1+A-' (U), 11.

4. If, unlike the random sets on the right-hand side (R.H.S.) of Eqs. (2.19), (2.20), and (2.23),
two statistically independent uniform r.v.'s U and V, say, are present, then, for any fuzzy subsets A and
B of X and all x E X,

dl'
Pr (x E Su (A) U Sv (B)) = 0A@B (X) - 0 A (X) + < E (X) - 4A (X) . 4?B (X)

> max (OA (X), B (X)) - Pr (x E Su (A) U Su (B)) = Pr (x E Su (AUB)) . (2.28)

Similarly,

Pr (x E Su (A) n Sv (B))- 4A.B (X) O *A (X) * B (X) 6 min (OA(X), B(x)

- Pr (x E Su (A) n Su (B)) - Pr (x E Su (AnfB)) .. (2.29)

Strict inequality, in general, holds in Eqs. (2.28) and (2.29).

Note that both Su (A) U Sv (B) and Su (AEDB) are equivalent (to A ED B) w.r.t. one point cover-
ages, but are quite distinct in structure.

Similarly, Su (A) n Sv (B) and Su (A-B) are equivalent w.r.t. one point coverages (to A * B) , but
are also different in form.

5. The definition of a probability measure of a fuzzy subset A of ordinary probability space
(X, B, A) having a corresponding random variable Y which is assumed statistically independent of U,
becomes here (see, e.g. Ref. 7, p. 33)

7



1. R. GOODMAN

Pr (A) = E(A(Y)) = Pr (Y E Su (A)) = f Pr (x E Su (A)) dj (x)
xEx

= f Pr (Y E Su (A)) du . (2.30)
u-O

6. For any fuzzy subset A of X x Y, it is always true

A 5 projI(A) x proj 2(A) , (2.31)

and hence by Eqs. (2.23) and (2.24),

Su (A) 5 Su (proj1 (A)) x Su (proj2 (A)) . (2.32)

If A is such that equality holds in Eq. (2.31), then projI (A) and proj2 (A) are said to be non-
interactive w.r.t. A , which is clearly equivalent, by Eqs. (2.23) and (2.24) to equality holding in Eq.
(2.32). Thus, in this notation A and B are non-interactive w.r.t. A x B.

7. Note that for the A ( ) mapping as in Eq. (1.1), the analogue of Theorem 3 is a restatement
of the usual laws of probability theory. For examples, if S and T are any statistically independent
random subsets of X

A(SU T) - A(S) 9 A(T), (2.33)

A(SnT) - A(S) * A(T) . (2.34)

It is always true that

A(X - S)- X -i A(S), (2.35)

8. A linguistic variable A (see, e.g. Ref. 4, section 3) in its simplist form can be considered as a
generalized fuzzy set where the range of the membership function of A consists of membership func-
tions of ordinary fuzzy sets:

OA : X - [0, 1 ]X . (2.36)

Using Theorem 1, the probabilistic interpretation becomes, for each x and w, E X where A, is
some fuzzy subset of X

AWA(w) A - (OA, (X))xEx ; (2.37)

OA,, (x) -Pr (x E Su (A,,)) *(2.38)

0

SOME APPLICATIONS OF THE CANONICAL MAPPING TO FUZZY LOGIC

In this section, fuzzy reasoning and classical logical reasoning are shown to be related. In particu-
lar, if the premise of an argument consists of conjunctions of fuzzy and/or probabilistic inequalities,
equivalent fuzzy and random confidence sets may be derived for the unknown variable in question.
Indeed, it appears that no real information loss-nor any real change in structure-occurs if the entire
reasoning is carried out in a fuzzy logic (or set) context, and then translated in terms of an equivalent
probability statement, if so desired. (For basic background, illustrative examples and definitions used in
fuzzy reasoning, see Refs. 4, 14, 21, 22 and 23.)

8
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Suppose V - (vi, ... , vm) E RR or ll x .. xflm for more abstract sets Ii, i-1, .. , m,
where each v; represents some characteristic: dimensional, such as age in years of Mr. C, height in
inches of building D, or nondimensional, such as amount of membership in a given fuzzy set such as
tallness, goodness, etc.

V is not considered a random quantity, but rather an unknown quantity, with values restricted by
n propositional functions Al,.., A,, which are identified as fuzzy subsets of RI, and by n lower bound
membership levels al, ... , a E ([0,1 which may or may not be specified throughout the problem. Each
propositional function, in turn, may be internally composed of logical relations between other more pri-
mative ones. In that case, it is natural to identify the logical relations 'and', 'or', 'not', 'if then', with
the fuzzy operations 'n', 'U', 'R" -l 0(', 'V', respectively. For purposes of simplicity, it will be
assumed that all of the restrictions on V hold conjunctively.

In addition, suppose TI, ... , Tr are r random subsets of RI, r possibly vacuous, individually sup-
plying information about V at confidence levels I I . . . respectively, with the joint distribution of
the Tj's not necessarily specified. (For both the propositional and probabilistic statements, any informa-
tion concerning subvariables of V is always formally expressible in terms of all of V.)

Then, the premise of the augument concerning V can be stated as:

(OA1(V) > a,) & (OA2(V) > a2) & *- & (OAn(V) > an)
&(Pr (V E TI) > PIl) & ... & (Pr(V E Tr) > P3r). (3.1)

Note that the canonical mapping in Eq. (2.4) could be applied separately to each fuzzy set Ai in
Eq. (3.1) so that (OAi(V) > a1) is replaced by (Pr (V E Su.(A,)) > a;), where Ul, ... ,Un are uni-

formly distributed over [0,11, but with joint distribution of the Ui's (and Tj's) not specified. Thus, e.g.,
it is possible to choose U1 - -- Un and to be stat. indep. of the Tj's or to let all Ui's and Ti's to be
stat. indep.

In practice, the distribution of each Tj is often known only in the conditional form Pr(V E T. IV),
where V also plays the role of an unknown parameter, and where a sample outcome, say tj has been
observed from Tj . In this case, in order to have all one point coverages well defined, it appears reason-
able (via a fiducial type of argument) to redefine Tj so that Eq. (1.1) becomes

> ,B , for all V ET
Pr (V E Tj) - OA(Tj) (V) < 1 -, , forallV £ T (3.2)

Regardless of the joint distribution of the Ui's andTj's, for all V satisfying Eq. (3.1),

a - min (al, .-- , an, 1I, *- ./r)
< min (OA1(V) OA, , (V), OA(T,) (V), * * A(T,) (V))

- 3B(V) - Pr (V E Su (B)) (3.3)

which is formally the same as choosing Ul e * * U., = U, replacing the '&'"s in Eq. (3.1) by fuzzy intersec-
tions and forming B, where

B A l n n An n A(T1) n n A(Tr) . (3.4)

Note, from Eq. (2.20),

Su (B) = Su (A) n n Su (Ad) nSu (A(TI)) n nfSu (A(Tr)) . (3.5)

9



1. R. GOODMAN

The expressions on the R.H.S. of Eq. (3.3) consist of an equivalent (w.r.t. all one point cover-
ages) a -level fuzzy confidence set B, and a random confidence set Su (B) for all V satisfying Eq. (3.1).

It should be remarked that even if all of the Ui's and Tj's mentioned above were assumed statisti-
cally independent, the resulting natural intersection y-level random confidence set (for all V satisfying
Eq. (3.1)) determined by Q in Eqs. (3.3') and (3.5') is not necessarily preferable to the a-level one in
Eq. (3.3) determined by Su (B), where

Y v al ... an 'P Pr < Pr (V E Q), (3.3')

where

Q f Su, (Al) n *n Sun (An) n T n * n Tr M )

The above remark can be justified by first noting that y is not as tight a lower bound as a. Fur-
thermore, when al - - a, - PIt - - Pr, if V is such that Eq. (3.3) holds, then V satisfies Eq.
(3.3'), and clearly Eq. (3.3) is preferable to Eq. (3.3'). On the other hand, when, say, al, .. , a, ,
P2, .. , Pr are close to unity, with PI arbitrary, it follows that if V is such that Eq. (3.3') holds, then Eq.
(3.3) holds approximately and thus Eq. (3.3') is preferable to Eq. (3.3).

Often, it is desired to obtain confidences about one or more components of V. For example,
applying Eq. (2.26) to Eq. (3.3), confidence sets for v1 can be obtained from the premise about V in
Eq. (3.1):

For all v, satisfying Eqs. (3.1), (3.2)

a K Xc (vi) - Pr (vltE Su (C)) < Pr (vI E proj I (Su (B))) , (3.6)

where

C I proj1 (B), (3.7)

and B is given in Eq. (3.4).

Thus, Eq. (3.6) yields C, an a-level fuzzy confidence set for v1, an equivalent a-level random
confidence set Su (C) for v1, and a somewhat more complicated (non-equivalent) a-level random
confidence set, proj I (Su (B)) for vi, for all v1 (and V) satisfying Eq. (3.1).

A brief example of applications to a disjunctive premise:

(OAI (V) > at) or (OA2 (V) > a2) (3.8)

implies

a df min (a,, a 2) ( max (CA, (V), OA2 (V)) - OAIUA 2 (V)

-Pr (V E Su (Al U A2 )) - Pr (V E Su (A) U Su (A2)) * (3.9)

Logical relations forming the premise other than conjunctive or disjunctive ones could be handled
by either translating in terms of possible negations or affirmations of the above connectives, or perhaps
more satisfactorally modeled directly in terms of fuzzy relations, as in Example 4 for 'if ( ) then ( ) ' .

10
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The following four examples illustrate the previous discussions.

Example 1. (See Zadeh [231, example 1, p. 23)

Premise: v1 is a small positive real number; V2 is a positive real number such that vI and V2 are approxi-
mately equal; and V3 is a positive real number that is much larger than both vI and v2.

Conclusion: How large is v3 ?

Define

V - (vI, V2, V3) E 1R3
, (3.10)

and fuzzy sets

Al if small (3.11)
df

A2 I approximately equal, (3.12)

A3 i much larger than (for third component w.r.t. first two), (3.13)

where for all V - (vI, V2 , V3) E R 3

OAI(V) - OA,(vI) is a monotone decreasing (from 1 to 0 ) function in vI over R' (3.14)

OA2 (V) A2 (VI, V2 ) - OAI(lVI - V2 1); (3.15)

i.e., vI is approximately equal to v2 iff lvI - v2 1 is small;

min ((1 - AI(v3 - v1))4 (1 - OA,(v3 v2) )4)

iff V3 > VI, V2OA3 ) = - - - - - - - - - - - - - - - - - -(3.16)
0,
iff V3 < vI or v3 < v 2

i.e., V3 is much greater than both v1 and v2 iff ((V3 -v 2 is very2 not small) &
(V3 - vI is very2 not small)), where for any fuzzy set membership function OA k Onot(A) = 1 - Ok *

Overy(A) = 'A ' Xvery2(A) = fA, etc.

Then the premise becomes here

(0A,(V) > ad) & (OA2(V) > a2) & (OA3(V) > a3), (3.17)

for some unspecified 1 > aI, a 2 , a3 > 0

Equation (3.6) then implies the conclusion
df

a min (a ,a 2 ,a 3 ) < OC(V3) = Pr(V3 E Su (C)) < Pr (V3 E proj3 (Su (B))), (3.18)

where

B = A, n A2 n A3 (3.19)

and

C df proj3 (B) . (3.20)

11
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For all V3 E R+,

OC (V3) = sup OB (V) sup min(/A, (VI) . <A2 (V2) ' A3 (V0)) (3.21)
over all 1,IV2 ER+

VI, V2 E R+

= (1 - A1(V3))4

by substituting from Eqs. (3.14), (3.15), and (3.16) and graphical inspection.

Thus, C can be interpreted as

C - very2 not small - very large . (3.22)

Eqs. (3.18) and (3.21) imply that

V3 > 0-1 (1 - al/4) , (3.23)

and

SU (C) - [0A1(1 - UI/4) 1] . (3.24)

Example 2. (See Zadeh [131, problem 3, page 2)

Premise:

Source 1: Most ships spotted in the surveillance area of interest have tall masts.

Source 2: It is known from previous experience that most of the tall masted ships are enemy ships.

Conclusion 1: How many ships in the area are enemy ones?

Conclusion 2: How many ships in the area are tall masted enemy ships?

Define

G - (gg, ... ,g) - set of all ships in area, (3.25)
df'

n - card (G) (estimated), (3.26)

and fuzzy sets

dfAl -f enemy ,(3.27)

A2 - tall masted, (3.28)

where OA2 : [0,1 -[0,11 is a monotone increasing function, where if g E G,

ht(g) d measure of mast height in feet of g, (3.29)

and OA 2 (ht(g)) is a measure of mast tallness of g

OAX G - [0, 11 (3.30)

unknown may be a fuzzy or ordinary set,

Vl - l . 2.l,- [0,1], (3.31)
V - (VI9 . ., V2n, V2n+l) , (3.32)

12
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V2n+I E [0, 1],

v;d - AI(g;) ,i-1,.., n , (3.33) 

Vn+d d OA,(g) i n (3.34) ;:

f (vi, v. ) d (1/n) v - % of ships in area that are enemy (3.35)

h(v.+ 1,.. *v 2n) - (1/n) vn+ - % of ships in area that are tall masted, (3.36)
i-i

j(VI, .,V2n) (/ ,Vn+i) LjI V; Vn+i

-% of tall masted ships in area that are also enemy ones , (3.37)

k (vl,.., v2n) - (1/n) * v; Vn+i - % of ships in the area that are tall
i-I

masted enemy ones .
(3.38)

(Note that for mathematical convenience, the possibly more appropriate expression
min (v;, vn+i ) has been replaced by v; vn+j.)

Also, define the fuzzy sets

A3 I most, (3.39)

where OA3 : [0, 1] - [0, 11 is a monotone increasing function (sharply so, after 0.5),

A4 - ordinary function f, (3.40)

where A4 : Ql X X flQn X Q 2n+1 - [0,1] is such that for any v; E fQ1 = [0,11, i 1,.., n, and

x E Q2n+1 - [0,11

I iff x =f (VI, . ,vd

OA4(vi, . ., Vn , X) iff x f (v, .. ,v) (3.41)

A5 - ordinary function j, (3.42)

where #A 5 : flI X *- X f12n X Q 2n+1 - [0,11 is such that for any vi E fQ - [0,1], i 1,.., 2n, and

y E Q2n+1 - [0, 11

f1 iff y = k(vl, ., V2n)

OAS(Vl, -. , 9v2niy) | Oiff y ;d k(vl,.., V2n)

Then the premise here becomes

(OA3(h(v.+1 , --, V2.)) > a,) &(MOA3(j (VI * - * V2d)) > a2 ) & (OA4(V, .- ,.Vn,X) = 1)

& (OA5(VI * -- V2n * Y) =1) (3.44)

13
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For conclusion 1:

Equation (3.6) implies

a df min (aba 2 ) < Oc(x) - Pr(x E Su (C)) < Pr(x E proj2 ,+1 (Su (B))), (3.45)

where B is given by membership function OB, where for any V - (vI ,.., v2n, x),

OB(V) - min (OA3(h(vl+, , . . v2n)), 4A3(j (VI, **, V2d)) OA4(Vl , * . Vn , X))

OD(vI ,. ., V2n) I min(OA3(h(vn+l . v2n)) 4A3(i (Vl * -, V2r))

iff x - f(vI, , v2,)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - (3.46)

0 iff x ;d f (v I,-, V2r)

C - proj2 n+t(B) (3.47)

is determined by, for all x E [0, 11,

: -c(X) - sup B(V)- sup (O B (VI, .. V2,))over all over all
VI, v2n E( 0, 1 l VI, v2., 10 I1 

such that

- Of(B) (X) - OA3(4'(X)), (3.48)

where
df'

SUp - sup min (z, (1/nz) VT -V")

V',V" E R[( (3.49)

By a geometric argument, it can be shown qi (x) > x . In particular, for n = 2,

fvrx for 0<x<1/2
ip(x) = i(x) for 1/2<x<1

where 1P2(x) is the solution z of

1 + (2z- 1) (2x - 1)
2z

Thus, C can be interpreted as

C= somewhat less than many (to the degree tp(x) exceeds x) . (3.50)

14
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Equations (3.45), (3.48), and the monotone increasing property of tF imply

X > tV (OA-1 (a) (3.51) I
and F-r

Su (C) = [0r'(0A (U)), 11 . (3.52)

Conclusion 2 is a simpler result:

Replacing, where required, x by y, and f by k

a - min(al,a 2 ) < Xc(y) = Pr (y E Su (C)) < Pr (y E proj2 n~1 (Su (B)), (3.53)

where now for V - (vI,.. -, v2 ny)

O D(VI, . . , V2n) iff Y= k (VI *,V2n)
B(V) = I iff y f k(vl,,,V 2 n) (3.54)

C - proj2n+t(B) is now given by

0 C (y) - SUP [0, 4B~v M ~k(H) (y)
VI s-V2nE[0,1°1 

- OA3 ( SUp (min(h(v'),j(v'))) )
all V'ER2n
such that

y-h (v') j (v')

since k(v') - h(v') j(v) ,

O XA3 ( sup min(h(v'), y/h(v'))) = OA3 (-.4) (3.55)
04h(v')41

Thus

C - more or less-most (3.56)

y > (O -1 (a ))2, (3.57)

and

Su (C) - [-IX3' (U))2, 1] . (3.58)

The next example illustrates an application to mixed fuzzy and random statements. Example 3.
(Related to Zadeh [131, problem 5, page 2)

Premise:

Individual A: 'It is not quite true Kati is very old.'

Individual B: 'It is not true she is young.'

Individual C: 'I believe she is most likely between 40 and 45 years of age.'

Source D: 'Based on dental records, the probability that she is between 44 and 47 years of age is (at
least) 0.9.'

15
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Conclusion: How old is Kati?

Define:

V = vi = age (Kati) E f l = R'

and fuzzy sets
dl'

Al = young

A2 = very old = very2 not young
dl'

A3 = true

A4 = not true

A5 = not quite true = not -iue
df'

: A6 = most likely

A7 = ordinary set [40,45],

A8 = ordinary set [44,47],

with membership functions

OAl: IR' -1[0,11

is a monotone decreasing function (from 1 to 0),

OA2 (VI) = (1 -OA,(VI))2

OA3: [0,11 - [0, 11

is a monotone increasing function-sharply so near 1 (from 0 to 1)

OA4(X) = OA3 (X) , E [0, 1] 

tkA5 (x) = 1 -4A2(X) , x E [0, 1]

OA 6(x) = max (x, 1-, ), x E [0, 11

where, e.g., /3 = 2/3. (For other approaches to modeling degrees of possibility, see Ref. 18, pp

O 1 iff v1 E [40,451

7(V 0 iff v) £ [40,45]

etc.

In addition, let T, be any random subset of R' such that outcome A8 is observed and

0.9 <(Pr(vl E TIlvI)

for all possible v.

Then let (see Eq. (3.2))

0.9, for all vi E A8

OA(T1 ) (VI) = 10.1, for all vi £ A8

16
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Thus, the premise becomes here, for all vI of interest:

(OA5(OA2(V,)) > at) & (OA4 (OA,(Vi)) > a2)

& (OA6 (OA7(VI)) > a3) &(OA(T,) (VI) > 0.9)

for unspecified 1 > a 1, a2, a3 > 0 .

Equation (3.3) then implies (no projection needed here), for all vI satisfying Eq. (3.77)

a dmin(al, a2, a3, 0.9) <( B(vl) - Pr (vI E Su (C))

where,

OB(V1) min | iA5 (OA2(VI)), OA4 (OA1(VI)) , OA6('OA7(V1)), OA(T,) (I)J

- mint| 1-I 01/2((1- l (V,))2) , 1 -A3

t /3,for vi E A 7 0.9, for vI E A8I

|1- $, for v 1£ A7 I0.1, for vI £ A8J J

where

a

- 1-OA 3(OA1 (Vd))

1 - O/2((1 - OA,(Vi))2)

a, if min(1 - ,, 0.1)
a2 - min (, 0.1)

aI dfa a4 min (/, 0.9)

a3 df min (1 -P, 0.9)

iff vj(a) < v I < v; (a)

iff vI ( min (v0 ,v;(a))

iff v1 > max (vo , v'(a))

iff v1 < 40 or v 1>47

iff 40 < vI < 44

iff 44 K vI < 45

iff 45 < vI ( 47

(3.79)

(3.80)

(3.81)

I v;(a) - COI ( (1 - a)),v;(a) - *A (1 -./iA3(h

V0 =f OA I1 (Y0) I

with y0 uniquely determined from

4A3 (Y0) = OA3((1- YI )

(3.82)

(3.83)

Then, w.l.o.g., ordering the possible values of a as : a, ( a2 < a3 < a4 , Eqs. (3.78) and (3.79)
imply:

For O < a < min (y0 , a,),

vI E S(,) I [vi'(a), vF(a)] .

17
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For a, < a K min (y0 , a2),

vI E S(a) - [vl (a), vlF(a)] n [40,471 .

For a2 < a < min (y0 , a3),

VI E S(a) I [V' (a), vF (a)] n [44,471 .

For a3 < a ( min (yOa4),
VI E S(E() = [vlv(a), v-(a)]l n [44,451 . (3.84)

(For a > min(yo , a4), v1 is vacuous.)

Similarly, Su (B) is determined for any value of U, 0 ( U ( min (y0 , a4), by simply replacing a
by U everywhere in Eq. (3.84). Note that for min (y0, a4 ) < U < 1,

Su (B) = 0 . (3.85)

Example 4. Generalized Modus Ponens

Premise: From experience, a sensor operator knows that in monitoring a target, when attribute Al
(e.g., maneuvering) is strongly present, then probably attribute A2 (e.g., being aware of the operator's
presence) is mildly present. Al is a function of x2 , the observed statistical goodness of model fit, while
A2 is a function of q, an m-dimensional vector, representing various intelligence information concern-
ing the target. On one particular occasion, the operator observes that Al is only moderately present.

Conclusion: What can be said in the latter occasion about the presence of A2?

Define

dl'VlId X2 I R+, V2 =q E R' , and V d= (VI, V2) E R+ x lRm,

A, = attribute Al present

A2 = attribute A2 present

A3 = attribute Al very strongly present

A4 = attribute A2 mildly present

A5 = probably,

a fuzzy subset of [0,1]

A6 = probably attribute A2 mildly present

A7 = if( ) then ()

A8 = if A3 then A6

= (A3 x Rm) -> (R+ x A6)
a fuzzy subset of R+ x Rm.

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

18
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The premise may then be stated as

(OA8(V) > a,) & (OA1(VI) > a2) (3.95)
for 1 > a 1, a 2 > , unspecified constants.

Assume that OA,: R+ I [0,11 is onto and it is reasonable to define, for all V E 1 xR,

'A, (V) = fA,(Vl) , OkA2 (V) f ( A2 (V2)

'OA 3 (V) -f A, (VI) 3 (VI) (3.96)

+ A4(V) A4 (V2) *Lf v2)2 (3.97)

From Eq. (3.73) it follows, for fl fixed at say 1/2

0 A, WdL' max 8x, 1-3), (3.98)

for all x E [0,11.

Thus,

'OA6(V) = OA6 (v2) = 0A5(0A 4 (v2)), (3.99)

0A,(x,y)5=max(1-x,y) , (3.100)
for all x, y e [0,1]. (See Eq. (2.22).)

Hence, for all V E R+ x RI,

OA,(V) e 0A7(0A3(V,),AA6(V2)) * (3.101)

Then Eq. (3.6) implies for all v1 satisfying (3.95),

a - min (aj,a 2 ) 6 Oc(v2) = Pr(v2 E Su (C))

6 Pr (v2 E proj2 (Su(B))) , (3.102)

where

C if proj 2 (B) , (3.103)
Bsf A8 n A , (3.104)

and for all V E RI x R m

OB(V) = min(max(l- A1(v1),ap.A&2(v2) ,10-) 0A1(VI)) (3.105)

OtA,(VI) iff 0 < OA.(VI) < max (xO, 0A6 (V2))

e 1 4 AI(VI) iffXO < OA1(v,) ( (1-A 6(v2))

4OA6 (v2) iff max ((1M-A 6 (V2)) 1 /3, OA6 (V2)) 6 OA1 (VI) < 1.

By graphical inspection,

4c(v2) = sup 4B(V) = max (xO, ,OA6 (v2)) , (3.106)
VIE Il+
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where

OA6 (v2) = max ( *OA'2(v2) ,1-/3) , (3.107)

and x0 uniquely satisfies the equation

x0 = 1-xx . (3.108)

Thus, Eqs. (3.102) and (3.106) imply that v2 is such that:

If 0 < a < y (3), then v2 E R m can be arbitrary. (3.109)

If ye() < a ( 1, then

(a/,8 )2 < et) A2 (V2) '(3.110)

where

Y0 max (I-A, x0) .(3.111)

Hence,

R', iff OK U <Y()
Su (C = -1 XAI([(U//3)2, 1]), iff y () < U( 1 . (3.112)

Here, C may be interpreted from Eq. (3.106) to mean

C= A2 is somewhat less than (to the degree that max (xO, <OA6 (v2 )) exceeds 4A6 (v2 ))

probably mildly present.

CONCLUDING REMARKS

A relatively simple tie-in has been established between all fuzzy and random subsets of a given
space, via the canonical mapping of Eqs. (2.3) and (2.4). In the previous section, it was shown that
this mapping relates fuzzy and probabilistic reasoning through the establishment of equivalent fuzzy
and random confidence sets with respect to the unknown variable. Connections between fuzzy set tech-
niques and probabilistic methods remain to be explored in other fields of application, such as in fuzzy
topology (e.g. [271 and [28]), fuzzy decision theory (e.g. [11), or fuzzy clustering and partitioning (e.g.
[2,3,291). For example, in the latter, the most common constraint on a fuzzy partitioning
1)AP **, OAkl of a set X is to require, for all x E X,

k
O Ai(X = W (4.1)

However, applying Eqs. (2.10) and (2.19) to Eq. (4.1), it follows that for all x E X,
k k

Pr (x E Sj (UI Ai)) = Pr (xE U Su (A,)) < 1, (4.2)

with strict inequality holding in general.

Thus, perhaps, a more natural constraint (but possibly less computationally feasible) is to require
k

Pr (x ESuU UIAi))1=

20
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412

i.e., 

max 0A,(x) = 1 , (4.3)

so that all points in X are guaranteed coverage with probability one.

The following problems and results warrant further investigation:

(1) Results (1.1) and (2.10) show that for any given space, the collection of all random subsets is
decomposed into equivalence classes, where each such class is equivalent w.r.t. one point coverages to a
particular fuzzy subset. One representative of any such class is the random set produced by the canoni-
cal map (Eq. (2.4)).

What direct characterizations exist for these equivalence classes?

What functions, other than the canonical one, can be explicitly constructed mapping each fuzzy
subset into some representative of the corresponding equivalence class of random sets? Are any of
these functions isomorphic-like in structure with respect to standard fuzzy and random set operations?

(2) Determine mappings from the class of all multiple point coverage functions of some prescribed
type into the class of all random subgets, for a given space, which preserve these coverages. For exam-
ple, let X be a given space and G = the set of all two point coverage functions, i.e., for any typical
4E Gdf, : I(x, y)Ix,yE X} - [0,11, with the restriction ({x,y}) < min(4k(x)-, +(y)), where
+ (x)= 0((x,x)), etc. Then find a computable K: G- R such that for all x, y E X,

O(x, y})= Pr ({x,y) C K(+)) . (4.4)

(3) Some partial responses to the questions posed above in (1) and (2).

(i) A general construction might be established which determines a probability measure over a set
of subsets of a given space X, and hence, in a sense, a random subset of X, which is equivalent to a
given fuzzy subset of X for one point coverages. A similar result may hold for given multiple point
coverage functions:

Let X be a given space with or -ring of subsets B (X). Extending Eq. (2.11), for any
C E B (X) define

Cc (BIB E B(X) & B D C) . (4.5)

(I) Suppose, fuzzy subset A of X is given. Then, first define, for any x E X

VA(C(x)) e t A (X) * (4.6)

Then define, inductively, for distinct xl, .. , xm EX , and each integer m > 2

0 < PA(q. 1 ,.., xl I min v A((x. '.' l._, x ) (4.7)
over all ]m-

lI l- I<. *j- I< m-la
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For any finite sets Cl, C2 E B (X) , define

VA(CCI -1 CCIU C2) - VA(CC)- VA(CCI U C2)

VA (CC, U CC2 ) VA(CC) + VA (CC2)

-VA(CCIUC 2) , (4.8)

etc.

It can be seen that the ring of sets, R, generated by the C1 x)'s consists of all finite un-
ions of sets of the form Cc e 1 C(,,x1 -- C(,j) where C is finite and C n (xI, x2 , . , xd- 0.

Then if, e.g., continuity from above at 0 could be shown [30] -possibly using the facts that
VA(CC) < ArA (Cc) (from Eqs. (2.18) and (4.7)) and v(C(l)) = ArA (Cix)), and the continuity of /ArA
at 4 as a probability measure-then VA would be a probability measure on R .

Then, using standard results (e.g., Ref. 30, pp. 41-62), VA could be extended uniquely to a com-
plete probability measure over a (R) , the a-ring of all outer VA-measurable sets.

Thus, the probability space (B (X) , a (R) , VA) would be identified with a 'random set' over B
(X) which coincides with OA with respect to all one point coverages via Eq. (4.6). (See (2.10), R.H.S.)

(II) Similarly, for unrestricted multiple point coverages, begin the construction with Eq. (4.6) replaced
by

VA(CC) e /(C) , (4.9)
where : B(X) - [0, 11 is a given coverage function with the required constraint

+(B) > + (C) , (4.10)

for all 0 • B 5 C

Then, by carrying out the remainder of the construction as in part (I) for fuzzy sets, a probability
space might be developed which is identifiable with a random set that is equivalent to k, with respect to
all set coverages.

Note that for VA in (I), the C(,,'s essentially generate the 0--ring F (R), whereas for AurA
(Eqs. (2.7)-(2.1 1)) the C(1 )'s are merely elements of the a--ring rA (Be) . It should also be pointed out
that r (R) and rA (B1) are relatively sparse compared to a--ring B (B (X)) for general random sets
over B (X).

(ii) Any probability measure VA over 5r (R) which is absolutely continuous w.r.t. /rA (and

equivalent w.r.t. all one point coverages), is characterized by a r.v. V over [0, 1] having p.d.f. h deter-
mining probability measure A over B1 such that

VA A(rA') , (4.11)

equivalently, VA corresponds to random set

f -FA (),(4.12)

and h satisfies

t f h(s) ds; for all t E rng (OA) * (4.13)
s-O
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Clearly, h 1 satisfies Eq. (4.13), yielding back, S = SU(A), U uniform over [0,1 'i Also, by
differentiating Eq. (4.13) with respect to t , h(t) = 1, for all t in any interval that exists which is a
subset of rng (OA). On the other hand, if rng (OA) is discrete, say 0 = yo < yl < < yn = 1, then the
solution set of h's satisfying Eq. (4.13) is determined by

Y.

h(s) dIf fj (S) (yj -yj_j) / JLfj (t) dt ,(4.14)
t-yj-l

for all s E (yj I, yj]; j = 1, 2,.., n-1, where each fj is arbitrary nonnegative having a positive
integral over (yj-_, yj]

(iii) A wide variety of integral and differential equations can be obtained which characterize vari-
ous subclasses of solutions to the one or multiple point coverage problem.

For example, let A be any given fuzzy subset of R with OA differentiable everywhere and unimo-
dal about some x0 with maximal value 1 > a = OA (xO) > 0, and such that
lim ) OA(S) - 0 . Consider then the class of all random intervals S of the form

IsI-os
(W - a, W + a), where a > 0 is constant and W is a r.v. over R having some p.d.f. h. Then it is
desired to determine those a's and h's for which S and A are equivalent w.r.t. one point coverages:

The characterizing equation is
x+a

f h(s) ds- OA(x) ; all x ER , (4.15)
s-x-a

yielding by differentiation

h (x + a)-h (x-a)- d all x E R . (4.16)
dx

In turn, Eqs. (4.15) and (4.16) yield the solution set consisting of all a's satisfying
+00

I - 7: OA (XO + (2j - 1) * a) ,(4.17)
i-- 00

and all h's of the form
k d4)A(X±t (2j -1) -a)

h(x 2ka)-h(x) y Yx (4.18)
j-1 d

for all x E xO , x0 + 2a) k - 1, 2, ... ; with h arbitrary nonnegative over [x0, x0 + 2a) such that Eq.
(4.15) is satisfied at x - x0 + a.

(iv) Let 4 be any given two-point coverage function over X as discussed in subsection (2) above,
where, without loss of generality, O : X x X - [0,1] , the membership function of some symmetric
fuzzy subset A of X x X, i.e., for all x, y E X, +(x, y) = O(y, x) = Q({x, y)).

In general, any attempt at using formally SU(A) - &'1 [U,1I , the analogue of Eq. (2.4) for one
point coverages, will not yield back equivalence between Su(A) and 4 w.r.t. two point coverages.
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Necessary and sufficient conditions for equivalence to occur are (using Eq. (2.32))

Su(A) - projI (Su(A)) x projI (Su(A)); (4.19)

equivalently,

+ (x, y) > u and 4)(y, z) > u (4.19')

implies +(x, z) > u; for all x, y, z E X, and all u E [0, 11

For an example of a 4 satisfying the above conditions, define for all x, y E X,

,4 (x, y) if f (min (4(x),0 4(y))) (4.20)

where f: [0, 1]- [0, 11 is dfny fixed monotone increasing function such that for all t E [0, 11,
f(t) < t. For example, f(t) -dat , 0 < a < 1. Note, for a - 1, (4.20) is a special case of Eq. (2.18)
for C - {x, y), when 4 (x, y) - Pr ({x, y) C Su(A)), for any given fuzzy subset A of X .

(v) If X is a discrete space, say, X - {xi, .. , xml, then the one point coverage problem reduces
to solving a system of (m + 1) linear equations-with coefficients 0 or 1-in 2m unknowns:

Define random set S to be determined equivalent to given fuzzy subset A of X by,

Pr (S -B) - aB . (4.21)

where B 5 X, and the 2m aB's are determined from

OA(xi)-Pr(xjES)= , aB ; j1,2,.,m
over all
B with
XiEB9X

0 < aB < 1, for all B ; C aB-l . (4.22)
BCx

One solution of Eq. (4.22) is furnished by S = Su (A), yielding
df'

SA (U) = Bi - X -H AI (Y0) -i XA (Yj) , (4.23)

for all U E (yj, yj+l] ; j = 0, 1,.., n - 1, where rng (4A) is ordered as

0 = YO < Yl < < Yn - 1, where possibly y0 and /or yn are vacuous.

In this case, it follows for any B 5 X,

[ 0 iff B • Bj, for any j

aB = Yj+l-yj iff B = Bj, for some (4.24)

Similarly, for any k , m - 1 > k > 1, the k point coverage problem for X requires the solution
km

of I i linear equations-with coefficients 0 or 1-in 2" unknowns.

Simple characterizations of solutions to these equations would be useful.
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(4) What about the converse of the thrust of this paper? Can fuzzy set theory-or perhaps its general- ;
ization, as given above, by multiple point coverage functions, be used to determine, in some sense,
random set theory? There may be some relation here with the concept of 'traps', as presented by Ken- Z
dal [311 (Equation (2.17) can be reinterpreted in terms of trapping functions), or perhaps with Shafer's ,
belief functions [171.
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